
Streaming the world of Horizon

Decima Asset Streaming System

Introduction

Killzone Loading System

• Traditional level- and section-based loading

• Loading screen while loading initial sections assets

• Corridor sections to unload old/load new sections

• Corridors were mostly one-way

• Could not load content around player dynamically

• File packing caused long iteration times for artists

Horizon Streaming System Design Goals

• No loading screens except for startup and fast travel

• No corridors, content should stream organically

• Continuous loading of content around player

• Faster iteration by not packing data

Decima Asset Structure

CoreText format

• All objects defined in custom text format

• Generated with in-house editor, Maya

• Object types map to C++ classes

• Objects have attributes and links to other objects

• Horizon content:

– 300,000 files,

– 16 million objects

– 20 million links

The CoreText format

Content graphs

• Any set of linked files represent a graph

• There are no cycles in the content graph

• Graphs must always be loaded fully

• Many subgraphs partially overlap

• Subgraphs are separated by Streaming Links

Content Graphs

Content Graphs

Conversion

Conversion System

• Process content graph recursively

• Translate each CoreText file into binary data

• Optimize content for runtime usage

• Generate loading hints, runtime code libraries

Conversion dataDebug dataGame data, shipped on disk

Asset Conversion

CoreText

Converter

Core CoreDebugCoreStream Dependencies

Post-Conversion

• For Horizon, 300,000 CoreText files generated

– 189,000 Core files, 20GiB

– 30,000 CoreStream files, 15GiB

• 1.2GiB of localized data per language

File Loading

Overview

• To load object, its file must be loaded

• The objects in that file often link to other objects

• Loading and initializing object graphs is depth-first

• Any object (and any file) is only in memory once

Core File Loading

Objects go through many phases during loading:

• Deserialization – create object and read attributes

• Link resolving – set pointers to linked objects

• Initialization – allow the object to execute init code

• Activation – add to world, physics, other systems

Load ordering

• Ordering is important:

– Any objects pointed to must always be initialized first

– Processing is depth-first in graph order

• Full graph must be known when loading assets

Loading Process

• Determine file graph

• Remove files already loaded

• Queue remaining files for async I/O (depth first)

• Create job graph for object initialization (depth-first)

• Deserialize files into objects

• Run initialization jobs for completed files

Reference counting Core Files

• Files are reference counted

• When loading a subgraph, skip loaded files

• Instead, take reference to loaded files

• Files are unloaded automatically on last release

• No object is ever loaded more than once

Reference Counting Files

• Let’s start loading a character:

• This character needs these files:

• No files are loaded at this point

HeadTexture

NPC_Blond

HeadModel HeadMeshNPC_Blond

Reference Counting Files

• We load these files and get this graph:

• Each file currently has a reference count of 1

Texture (1)NPC_Blond (1) BModel (1) BMesh (1)

• We wish to load a second character:

• This character consists of these parts:

Reference Counting Files

NPC_Grey

TextureGModel BMeshNPC_Grey

Reference Counting Files

• We know that two of these files are already loaded:

• So we load only these files:

Texture (1)NPC_Grey GModel Bmesh (1)

NPC_Grey GModel

• This leads to the new graph:

• Now BMesh has two references, and is shared

Reference Counting Files

NPC_Grey (1) Gmodel (1)

Texture (1)

NPC_Blond (1) BModel (1)

BMesh (2)

• We unload the first character:

• BMesh now has one reference

Reference Counting Files

NPC_Grey (1) Gmodel (1)

Texture (1)

NPC_Blond (0) BModel (0)

BMesh (1)

• We unload the second character:

• All files have reference count of zero and are unloaded

Reference Counting Files

NPC_Grey (0) Gmodel (0)

Texture (0)

NPC_Blond (0) BModel (0)

BMesh (0)

Prefetching

Prefetch Files

• Represent the file hierarchy of the entire game

• Generated during conversion

• Simple to determine file graph for any given file

• Very little data, ~20MiB on disk/in memory

Assume we’re working with these file graphs:

Prefetch Files

Character - A Model - 1

Model - 2

Mesh - 3

Mesh - 4 Texture - 5

Character - B Model - 6

Mesh - 7

Mesh - 8

Material - 9

7
6
2
3

6
8

5
3
1

7
6
8
9

4
5
2
9

9
2
6

7
6
9
3

.

3
1
2

8
2
3
4

1
2
6

3
5
6
2

Prefetch File

A 1 2 3 4 5 B 6 7 8 9

1

2

3 4 5 6 7

8

9 5

5

4

This is the Prefetch list for these files:

Graph A

• When traversing for A, we get sequence:

• Which corresponds with the depth-first graph:

A12345

Character - A

Model - 1

Model - 2

Mesh - 3

Mesh - 4

Texture - 5

Graph B

• When traversing for B, we get sequence:

• Which corresponds with the depth-first graph:

B67 895

Texture - 5 Character - BModel - 6Mesh - 8

Mesh - 7

Material - 9

Streaming Strategies

Streaming Links

• Roots of subgraphs

– Tiles, Characters, Weapons

• Loaded on demand

• Are loaded by Streaming Strategies

• Often overlap with other loaded graphs

Streaming Strategies

• Intermediary between game and streaming system

• Determine when to load/unload subgraphs

• Customizable logic for different domains

• Evaluated once per frame to queue load/unload

AlwaysLoaded Streaming Strategy

• Responsible for loading initial game content

– System assets

– World data

– Aloy

• Loaded at startup, never unloaded

TileBased Streaming Strategy

• Loads/unloads tiles around player

• Four tile resolutions:

– 9 High, full resolution tiles

– 9 Medium, medium res geometry and physics mesh

– 9 Low, low res baked geometry

– 12 Very low, always loaded

AreaBased Streaming Strategy

• Primary hull around player for loading hint

• Secondary hull around player for activation hint

• Used for quests, scenes, other dynamic encounters

ProgramBased Streaming Strategy

• Evaluates custom programs created by designers

• Used for complex streaming scenarios

• Uses player and world facts for dynamic content

Streaming Strategy Conclusions

• Well maintainable streaming system

• Can easily be extended by adding strategies

• Designers can implement streaming logic

Packaging

Packaging

• We had ~220,000 files for final package

• Exceeds limit of PS4 packages

• Opening and closing so many files is costly

• Needed a better way of shipping content

PackFiles

• Recombine files into very small number of large files

• Keep files open at all times,

• Keep file directory in memory

• Optimize file order for most linear access

• Compress files to fit all content on disk

Low File Count

Keeping Files Open

• Files open for duration of game

• On start, open files and read file directories

• In-memory file directory

• Only use sceKernelPreadv,

• No calls to open, lseek, or close

• Dramatically improves performance

Optimized file order

• Scan content graph to discover all file links

• Split files between initial/remainder/localized groups

• Group files in subgraphs based on streaming links

• Order files in groups on graph order, depth-first

Compression

• Write sorted, uncompressed files to 256KiB blocks

• Compress blocks

• Write compressed blocks sequentially

• Index maps from logical to physical offset

R

2

1 3

98

7

64

5R 1 3 5 7

2 4 6 8 9

Sorting File Graphs

9

Packing Files

8
7
5
6
3
4
1
2
R

Compressing Blocks

9 8 7 5 6 3 4 1 2 R

R 1 2 3 9875 64

Block Mapping

L L L L L L L L L L

P P P P P P P P P P

Patching

• A patch file is a regular PackFile

• Contains added/modified files since Gold Master

• Index is overlay on Gold Master file index

• Lookup finds patched file entry

• Simple code, no delta compression

• Current 1.30 patch is only ~98MiB of content

Development

• No PackFiles in development

• Instead, files are loaded from host PC via socket

• Host PC keeps files in memory

• PS4 HDD only used for testing packages

I/O Performance Results

Package File Count Logical File Count Read Average

Killzone Large Files ~3000 ~3000 ~50MiB/sec

Horizon MemCache ~200,000 ~200,000 ~90MiB/sec

Horizon Shipped Package 4 ~200,000 ~60MiB/sec

• Small files improved iteration times enormously

• No need to do any packaging during production

• Packing files only for shipping works great

Memory Management

Memory Layout

High-level view of memory layout

Heap

• Fixed size, ~800MiB, Onion

• Managed by DLMalloc

GNM Video Pool

• Fixed size, ~500MiB, Garlic

• Render targets, contexts, compute shaders

GNM Shared Pool

• Fixed size, ~300MiB, Garlic

• Subsystem-specific VRAM data

RenderData Pool

• Variable size, Garlic

• Contains textures, meshes, shaders

AssetMemory Pool

• Variable size, Onion

• Contains object data

Flexible Memory

• ELF, PRX, Stacks

• No application data

AssetMemory and RenderData

• Share physical memory, not virtual memory

• All physical memory initially allocated to RenderData

• AssetMemory requests/returns physical memory

• RenderData provides physical memory on demand

RenderData Pool

RenderData Pool

• Manages VRAM

• Contains textures, meshes, shaders

• Has static and streaming assets

– Static: always loaded when objects are loaded

– Streaming: Optional mesh LODs/texture MIPs

• Defragmented continuously

Layout

• Contiguous mapped virtual memory range

• 2MiB page size

• Maintains block list (free/used)

• Free blocks moved to end of range

• Map/unmap physical memory at end of range

RenderData Pool View

End Block

Free Used

Defragmentation

• Defragmentation has 3 phases:

1. Frame M: Copy used blocks down to fill free space

2. Frame M: Move free blocks up to end of range

3. Frame N: Free copied blocks, then back to (1)

• Used blocks must linger 1 frame, may be in use

• Next frame new address is used, old block freed

Defragmentation Details

• Runs at start of every frame

• CPU determines which blocks to copy

• Maximum of 16MiB copied per frame

• Determines new address for copied blocks

• Schedules copy commands as Async Compute jobs

• After copy, updates handles with new addresses

Defragmentation

End Block

Free Used

Move used block down

End Block

Free Used

Move used block down

End Block

Free Used

Move used block down

End Block

Free Used

Move used block down

End Block

Free Used

Move free block up

End Block

Free Used

Move free block up

End Block

Free Used

Move free block up

End Block

Free Used

Move free block up

End Block

Free Used

Fully defragmented

End Block

Free Used

Asset Allocator

Asset Allocator

• Contains objects created through streaming

• Layered allocator

• Manages virtual memory ranges

• Uses physical memory requested from RenderData

Asset Allocator Structure

Block Allocator
Virtual memory ranges, multiple of 128KiB

Physical memory, multiple of page size

SmallBlock Allocator
Sizes <= 32KiB

Uses 2MiB blocks

LargeBlock Allocator
Sizes > 32KiB

Any size blocks

Linear Allocator
Contiguous allocation
Increments of 2MiB

Block Allocator

• Manages 1GiB regions of virtual memory

• Splits regions into 128KiB blocks

• Each block represented by 64B header

• Header contains pointer to SubAllocator

• Headers contiguous at start of region

• 512KiB overhead per 1GiB

Preventing fragmentation

• Prevent fragmentation of virtual memory:

– Large virtual memory allocations (128KiB increments)

– Don’t mix unrelated allocations (lifetime/size)

• Prevent fragmentation of physical memory:

– Combine equal-size blocks

– Combine blocks with same lifetime

– Commit physical memory in 16KiB increments

Allocation

• SubAllocator requests block of size N

• BlockAllocator:

– Ensures enough physical memory is available

– Allocates align_up(N, 128KiB) virtual address range

– Maps align_up(N, 16KiB) physical memory to range

– Sets pointer to SubAllocator in block header

Deallocation

• Pointer resolved to SubAllocator

• SubAllocator:

– Updates own bookkeeping for block

– If block empty, returns it to BlockAllocator

• BlockAllocator:

– Unmaps physical memory

– Marks virtual range as free

– Updates physical free size

Obtaining physical memory

• BlockAllocator:

– Requests 64MiB from RenderData

• RenderData:

– Unstreams low prio LODs/MIPs

– Defragments free space to end of range

– Unmaps 64MiB and shrinks RenderData

• Available (unmapped) memory grown by 64MiB

Releasing physical memory

• BlockAllocator:

– If > 64MiB physical memory free, notifies RenderData

• RenderData Pool:

– Maps 64MiB physical memory at end of pool

– Grows pool size

– Starts streaming LODs/MIPs into available memory

SmallBlockAllocator

• Manages allocations <= 32KiB

• Buckets per size class

• Each bucket is linked list of 2MiB blocks

• Each block is split into 2MiB/(size class) entries

• Free list maintained in empty entries

LargeBlockAllocator

• Single allocations > 32KiB

• Allocates align_up(N, 16KiB) from BlockAllocator

• BlockAllocator allocates align_up(N, 128KiB) range

• BlockAllocator maps align_up(N, 16KiB) memory

• Average overhead:

– 8KiB physical

– 64KiB virtual

LinearAllocator

• Collects multiple >32KiB allocations

• Maintains multiple >= 2MiB blocks

• Only used for allocations with identical lifetime

• Memory freed only after all allocations freed

• Fast alloc, only increment pointer in large block

• Fast free, release all blocks when done

• Low overhead for alignment/bookkeeping

Memory Management Conclusions

• Shared memory between Onion/Garlic works well

• Map/unmap overhead is low

• Allows for dynamic budgets

• Defragmentation:

– Expensive and complex

– But almost no waste

CPU Scheduling

CPU Scheduling

• Threads managed by job scheduler

• Two job types:

– Frame jobs (must complete each frame)

– Non-frame jobs (long-running jobs)

• Three priorities for each job type

• Carefully selected thread affinities

Scheduling and Thread Affinity Model

Main Thread

Worker Threads

Audio Thread

I/O Threads

Background Threads

CPU Scheduling Conclusions

• Full core occupancy achieved

• Clean separation between frame and non-frame jobs

• Non-frame jobs run in idle time of frame jobs

• Very few custom threads due to flexible system

• Better guarantees about completion and deadlines

Future Plans

Future plans

• Load object graphs, not file graphs

• Use key-value store for object storage/retrieval

• Hybrid VRAM solution:

– Defragmentation for small allocations

– Virtual memory for large allocations

Questions?

	Introduction
	Slide 1: Streaming the world of Horizon
	Slide 2: Introduction

	Killzone/Horizon
	Slide 3: Killzone Loading System
	Slide 4: Horizon Streaming System Design Goals

	Decima Content Structure
	Slide 5: Decima Asset Structure
	Slide 6: CoreText format
	Slide 7: The CoreText format
	Slide 8: Content graphs
	Slide 9: Content Graphs
	Slide 10: Content Graphs

	Conversion
	Slide 11: Conversion
	Slide 12: Conversion System
	Slide 13: Asset Conversion
	Slide 14: Post-Conversion

	File Loading
	Slide 15: File Loading
	Slide 16: Overview
	Slide 17: Core File Loading
	Slide 18: Load ordering
	Slide 19: Loading Process
	Slide 20: Reference counting Core Files
	Slide 21: Reference Counting Files
	Slide 22: Reference Counting Files
	Slide 23: Reference Counting Files
	Slide 24: Reference Counting Files
	Slide 25: Reference Counting Files
	Slide 26: Reference Counting Files
	Slide 27: Reference Counting Files

	Prefetching
	Slide 28: Prefetching
	Slide 29: Prefetch Files
	Slide 30: Prefetch Files
	Slide 31: Prefetch File
	Slide 32: Graph A
	Slide 33: Graph B

	Streaming Strategies
	Slide 34: Streaming Strategies
	Slide 35: Streaming Links
	Slide 36: Streaming Strategies
	Slide 37: AlwaysLoaded Streaming Strategy
	Slide 38: TileBased Streaming Strategy
	Slide 39
	Slide 40: AreaBased Streaming Strategy
	Slide 41
	Slide 42: ProgramBased Streaming Strategy
	Slide 43: Streaming Strategy Conclusions

	Packaging
	Slide 44: Packaging
	Slide 45: Packaging
	Slide 46: PackFiles
	Slide 47: Low File Count
	Slide 48: Keeping Files Open
	Slide 49: Optimized file order
	Slide 50: Compression
	Slide 51: Sorting File Graphs
	Slide 52: Packing Files
	Slide 53: Compressing Blocks
	Slide 54: Block Mapping
	Slide 55: Patching
	Slide 56: Development
	Slide 57: I/O Performance Results

	Memory Overview
	Slide 58: Memory Management
	Slide 59: Memory Layout
	Slide 60: Heap
	Slide 61: GNM Video Pool
	Slide 62: GNM Shared Pool
	Slide 63: RenderData Pool
	Slide 64: AssetMemory Pool
	Slide 65: Flexible Memory
	Slide 66: AssetMemory and RenderData

	RenderData
	Slide 67: RenderData Pool
	Slide 68: RenderData Pool
	Slide 69: Layout
	Slide 70: RenderData Pool View
	Slide 71: Defragmentation
	Slide 72: Defragmentation Details
	Slide 73: Defragmentation
	Slide 74: Move used block down
	Slide 75: Move used block down
	Slide 76: Move used block down
	Slide 77: Move used block down
	Slide 78: Move free block up
	Slide 79: Move free block up
	Slide 80: Move free block up
	Slide 81: Move free block up
	Slide 82: Fully defragmented

	Asset Memory
	Slide 83: Asset Allocator
	Slide 84: Asset Allocator
	Slide 85: Asset Allocator Structure
	Slide 86: Block Allocator
	Slide 87: Preventing fragmentation
	Slide 88: Allocation
	Slide 89: Deallocation
	Slide 90: Obtaining physical memory
	Slide 91: Releasing physical memory
	Slide 92: SmallBlockAllocator
	Slide 93: LargeBlockAllocator
	Slide 94: LinearAllocator
	Slide 95: Memory Management Conclusions

	CPU Scheduling
	Slide 96: CPU Scheduling
	Slide 97: CPU Scheduling
	Slide 98: Scheduling and Thread Affinity Model
	Slide 99: Main Thread
	Slide 100: Worker Threads
	Slide 101: Audio Thread
	Slide 102: I/O Threads
	Slide 103: Background Threads
	Slide 104: CPU Scheduling Conclusions

	End
	Slide 105: Future Plans
	Slide 106: Future plans
	Slide 107

